BiInO₃: A Polar Oxide with GdFeO₃-Type Perovskite Structure

Alexei A. Belik,^{*,†} Sergey Yu. Stefanovich,[‡] Bogdan I. Lazoryak,[‡] and Eiji Takayama-Muromachi[§]

International Center for Young Scientists (ICYS) and Advanced Materials Laboratory (AML), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, and Department of Chemistry, Moscow State University, Moscow, 119992, Russia

Received November 29, 2005. Revised Manuscript Received January 26, 2006

A new oxide, BiInO₃, was prepared using a high-pressure high-temperature technique at 6 GPa and 1273 K. BiInO₃ has the GdFeO₃-type perovskite structure, but crystallizes in the polar space group *Pna*2₁. Structure parameters of BiInO₃ were refined from laboratory X-ray powder diffraction data (Z = 4; a = 5.95463(7) Å, b = 5.60182(7) Å, and c = 8.38631(11) Å). BiInO₃ shows a second-harmonic generation signal of about 120–140 times that of quartz. BiInO₃ decomposes at ambient pressure on heating above 873 K to give In₂O₃ and Bi₂₅InO₃₉. No phase transitions were found between 140 and 873 K using differential scanning calorimetry and differential thermal analysis. Vibrational properties of BiInO₃ were studied by Raman spectroscopy.

Introduction

Noncentrosymmetric compounds are of special interest in materials science because of their technologically important properties, such as ferroelectricity, piezoelectricity, pyroelectricity, and second-order nonlinear optical behavior, that is, frequency conversion or second-harmonic generation (SHG).¹ A number of strategies have been proposed to prepare noncentrosymmetric materials,²⁻⁶ for example, utilizing cations with a lone pair of electrons, such as Bi³⁺ and Pb^{2+.2} Because of the stereochemically active lone pair, Bi³⁺ and Pb²⁺ usually have asymmetric coordination environments. The local acentricity is a necessary, but not sufficient condition for generating crystallographic noncentrosymmetry. A large group of materials that contain Bi^{3+} and Pb^{2+} do have crystallographic centrosymmetry. Nevertheless, this strategy has produced a number of interesting materials with a large spontaneous polarization^{2,3,7-9} and is particularly of interest for preparation of new multiferroic materials,^{2,3} where

* To whom correspondence should be addressed. Tel.: +81 (029) 851-3354 (ext. 8587). Fax: +81 (029) 860-4706. E-mail: alexei.belik@nims.go.jp. [†] ICYS.

- (1) Halasyamani, P. S.; Poeppelmeier, K. R. Chem. Mater. 1998, 10, 2753.
- (2) Azuma, M.; Takata, K.; Saito, T.; Ishiwata, S.; Shimakawa, Y.; Takano, M. J. Am. Chem. Soc. 2005, 127, 8889.
- (3) Hughes, H.; Allix, M. M. B.; Bridges, C. A.; Claridge, J. B.; Kuang, X.; Niu, H.; Taylor, S.; Song, W.; Rosseinsky, M. J. J. Am. Chem. Soc. 2005, 127, 13790.
- (4) Welk, M. E.; Norquist, A. J.; Arnold, F. P.; Stern, C. L.; Poeppelmeier, K. R. Inorg. Chem. 2002, 41, 5119.
- (5) Maggard, P. A.; Stern, C. L.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2001, 123, 7742.
- (6) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158.
- (7) Belik, A. A.; Azuma, M.; Saito, T.; Shimakawa, Y.; Takano, M. Chem. Mater. 2005, 17, 269.
- (8) Uratani, Y.; Shishidou, T.; Ishii, F.; Oguchi, T. Jpn. J. Appl. Phys., Part 1 2005, 44, 7130.
- (9) Belik, A. A.; Iikubo, S.; Kodama, K.; Igawa, N.; Shamoto, S.; Niitaka, S.; Azuma, M.; Shimakawa, Y.; Takano, M.; Izumi, F.; Takayama-Muromachi, E. Chem. Mater. 2006, 18, 798.

long-range orders of magnetic moments and electric dipoles coexist.

BiMO₃ has recently received a lot of attention as multiferroics^{10–12} and in the investigation of solid solutions of BiMO₃-PbTiO₃ to improve ferroelectric properties of PbTiO₃, reduce the amount of lead, and find new morphotropic phase boundary piezoelectrics.^{13–19} However, very little has been known so far experimentally about BiMO₃ with nonmagnetic ions (M = Al, Sc, Ga, and In)^{19–22} in comparison to the extensively studied multiferroic BiMnO₃ and BiFeO₃.^{23–26} In the course of our studies of BiMO₃ with

- (10) (a) Fiebig, M. J. Phys. D: Appl. Phys. 2005, 38, R123. (b) Prellier,
 W.; Singh, M. P.; Murugavel, P. J. Phys.: Condens. Matter 2005, 17, R803.
- (11) Hill, N. A. J. Phys. Chem. B 2000, 104, 6694.
- (12) Hill, N. A. Annu. Rev. Mater. Res. 2002, 32, 1.
- (13) Inaguma, Y.; Miyaguchi, A.; Yoshida, M.; Katsumata, T.; Shimojo, Y.; Wang, R. P.; Sekiya, T. J. Appl. Phys. 2004, 95, 231.
- (14) (a) Eitel, R. E.; Zhang, S. J.; Shrout, T. R.; Randall, C. A.; Levin, I. J. Appl. Phys. 2004, 96, 2828. (b) Cheng, J. R.; Meng, Z. Y.; Cross, L. E. J. Appl. Phys. 2005, 98, 084102.
- (15) (a) Zhang, S. J.; Randall, C. A.; Shrout, T. R. Appl. Phys. Lett. 2003, 83, 3150. (b) Yoshimura, T.; Trolier-McKinstry, S. Appl. Phys. Lett. 2002, 81, 2065.
- (16) Cheng, J. R.; Zhu, W. Y.; Li, N.; Cross, L. E. Mater. Lett. 2003, 57, 2090.
- (17) Cheng, J.; Eitel, R.; Li, N.; Cross, L. E. J. Appl. Phys. 2003, 94, 605.
- (18) Eitel, R. E.; Randall, C. A.; Shrout, T. R.; Rehrig, P. W.; Hackenberger, W.; Park, S. E. Jpn. J. Appl. Phys., Part 1 2001, 40, 5999.
- (19) (a) Halilov, S. V.; Fornari, M.; Singh, D. J. Phys. Rev. B 2004, 69, 174107. (b) Iniguez, J.; Vanderbilt, D.; Bellaiche, L. Phys. Rev. B 2003, 67, 224107.
- (20) Belik, A. A.; Wuernisha, T.; Kamiyama, T.; Mori, K.; Maie, M.; Nagai, T.; Matsui, Y.; Takayama-Muromachi, E. *Chem. Mater.* 2006, 18, 133.
- (21) Baettig, P.; Schelle, C. F.; LeSar, R.; Waghmare, U. V.; Spaldin, N. A. Chem. Mater. 2005, 17, 1376.
- (22) Belik, A. A.; Iikubo, S.; Kodama, K.; Igawa, N.; Shamoto, S.; Maie, M.; Nagai, T.; Matsui, Y.; Stefanovich, S. Yu.; Lazoryak, B. I.; Takayama-Muromachi, E. J. Am. Chem. Soc. 2006, 128, 706.
- (23) Atou, T.; Chiba, H.; Ohoyama, K.; Yamaguchi, Y.; Syono, Y. J. Solid State Chem. 1999, 145, 639.
- (24) Hill, N. A.; Rabe, K. M. Phys. Rev. B 1999, 59, 8759.
- (25) Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R. Science 2003, 299, 1719.

10.1021/cm052627s CCC: \$33.50 $\hfill \odot$ 2006 American Chemical Society Published on Web 03/01/2006

[‡] Moscow State University.

[§] AML

nonmagnetic M ions, we have shown that BiGaO₃ has a centrosymmetric pyroxene-type structure,²⁰ BiScO₃ has a centrosymmetric BiMnO₃-type perovskite structure,²² and only BiAlO₃ crystallizes in a noncentrosymmetric structure and is isotypic with the well-known multiferroic BiFeO₃.²⁰

In this work, we describe high-pressure synthesis, crystal structure, and characterization of a new perovskite-type oxide BiInO₃. The crystal structure of BiInO₃ was investigated by X-ray powder diffraction. BiInO₃ has the orthorhombic GdFeO₃-type distortion of the perovskite structure, but crystallizes in a polar space group. The thermal stability, Raman spectrum, and SHG efficiency of BiInO₃ are reported.

Experimental Section

Synthesis. A stoichiometric mixture of Bi_2O_3 and In_2O_3 (an amount of substance ratio of 1:1) was dried at 873 K for 8 h, then placed in Au capsules, and treated at 6 GPa in a belt-type high-pressure apparatus at 1273 K for 80 min. After heat treatment, the samples were quenched to room temperature (RT), and the pressure was slowly released. $BiInO_3$ was recovered from Au capsules as hard pellets, having light yellow color. According to X-ray powder diffraction (XRD), $BiInO_3$ contained a small amount of In_2O_3 and unidentified impurities. All of our attempts to prepare single-phased $BiInO_3$ by varying the synthesis conditions (temperature and time) failed. All of the samples contained some amount of impurities. Note that the kind and amount of impurities were different depending on the synthesis conditions.

Thermal Analysis. The thermal stability of $BiInO_3$ was examined on a SII Exstar 6000 (TG-DTA 6200) system at a heating rate of 10 K/min between RT and 1073 K. Differential scanning calorimetry (DSC) curves of $BiInO_3$ were recorded between 140 and 823 K at a heating rate of 5 K/min on a SII Exstar 6000 (DSC 6220) instrument in open aluminum capsules.

Vibrational Properties. Unpolarized Raman spectra of BiInO₃ were collected at RT with a micro Raman spectrometer (Horiba Jobin-Yvon T64000) in backscattering geometry with a liquid nitrogen cooled CCD detector. Raman scattering was excited using an Ar⁺-Kr⁺ laser at a wavelength of 514.5 nm. A 90× long working distance objective was used to focus the laser beam onto a spot of about 2 μ m in diameter. The laser power on the BiInO₃ sample was about 0.2 mW. The surface of BiInO₃ was damaged by a larger laser power.

SHG Experiments. SHG responses of powder samples were measured in a reflection scheme. A Q-switch pulsed Nd:YAG laser operated at $\lambda_{\omega} = 1064$ nm was used as a radiation source with a repetition rate of 4 impulses/s and a duration of impulses of about 12 ns. The laser beam was split into two beams to excite the radiation at a doubled frequency, $\lambda_{2\omega}$, of 532 nm simultaneously in samples to be measured and a reference sample, polycrystalline α -SiO₂.

XRD Experiments and Structure Refinements. XRD data of BiInO₃ were collected at RT on a RIGAKU Ultima III diffractometer using Cu K_{α} radiation (2 θ range of 18–150°, a step width of 0.02°, and a counting time of 9 s/step). The XRD data were analyzed by the Rietveld method with RIETAN-2000.²⁷ Coefficients for analytical approximation to atomic scattering factors for Bi, In, and O were taken from ref 28. The split pseudo-Voigt function

Figure 1. Fragments of the observed (\bigcirc) , calculated (-), and difference XRD patterns for BiInO₃ in the *Pna2*₁ and *Pnma* models. Bragg reflections are indicated by tick marks. The lower tick marks are given for the impurity phase, In₂O₃. Indices of the reflections in *Pna2*₁ are given.

of Toraya²⁹ was used as a profile function. The background was represented by a ninth-order Legendre polynomial. Isotropic atomic displacement parameters, *U*, with the isotropic Debye–Waller factor represented as $\exp(-8\pi^2 U \sin^2 \theta/\lambda^2)$ were assigned to all of the sites. For the impurity of In₂O₃, we refined only a scale factor and the *a* lattice parameter, fixing its structure parameters. The mass percentage of In₂O₃ in BiInO₃ was calculated at 3.8% from the refined scale factors. 2θ regions containing reflections of unknown impurities were excluded from the refinement of BiInO₃.

Results

Structure Refinement of BiInO₃ from XRD Data. Indexing Bragg reflections in the XRD pattern of BiInO₃ using TREOR³⁰ revealed it to crystallize in the orthorhombic system with lattice parameters of $a \approx 5.954$ Å, $b \approx 8.386$ Å, and $c \approx 5.602$ Å. Reflection conditions derived from the indexed reflections were k + l = 2n for 0kl, h = 2n for hk0and h00, k = 2n for 0k0, and l = 2n for 00l, affording possible space groups Pnma (No. 62, centrosymmetric) and Pn2₁a (No. 33, noncentrosymmetric).³¹ The XRD pattern of BiInO₃ was found to be very similar to those of GdFeO₃type compounds. Therefore, for initial fractional coordinates in Rietveld analysis of BiInO₃, we first used those of CdTiO₃ with space group Pnma.32 However, the fit of some reflections (for example, (020) in *Pnma*, Figure 1) was bad, while in space group $Pn2_1a$, the fit of these reflections was considerably improved (Figure 1). The Pnma model resulted in $R_{\rm wp} = 12.78\%$ (S = 3.45), $R_{\rm p} = 9.35\%$, $R_{\rm B} = 7.72\%$, and $R_{\rm F} = 3.93\%$, while the refinement in space group $Pn2_1a$ (standard setting: $Pna2_1$) gave noticeably lower R factors: $R_{\rm wp} = 9.56\%$ (S = 2.58), $R_{\rm p} = 7.30\%$, $R_{\rm B} = 3.95\%$, and $R_{\rm F}$ = 2.16%. In the *Pnma* model, one U parameter for O was negative $(-0.012(3) \text{ Å}^2)$, and another was large (0.049(7)) $Å^2$). It is known that disregarding a center of symmetry, if

- (29) Toraya, H. J. Appl. Crystallogr. 1990, 23, 485.
- (30) Werner, P. E.; Eriksson, L.; Westdahl, M. J. Appl. Crystallogr. 1985, 18, 367.
- (31) International Tables for Crystallography, 5th ed.; Hahn, T., Ed.; Kluwer: Dordrecht, The Netherlands, 2002; Vol. A, p 52.
- (32) Sasaki, S.; Prewitt, C. T.; Bass, J. D. Acta Crystallogr., Sect. C 1987, 43, 1668.

^{(26) (}a) Montanari, E.; Righi, L.; Calestani, G.; Migliori, A.; Gilioli, E.; Bolzoni, F. *Chem. Mater.* **2005**, *17*, 1765. (b) Montanari, E.; Calestani, G.; Migliori, A.; Dapiaggi, M.; Bolzoni, F.; Cabassi, R.; Gilioli, E. *Chem. Mater.* **2005**, *17*, 6457.

⁽²⁷⁾ Izumi, F.; Ikeda, T. Mater. Sci. Forum 2000, 321-324, 198.

⁽²⁸⁾ International Tables for Crystallography, 2nd ed.; Wilson, A. J. C., Prince, E., Eds.; Kluwer: Dordrecht, The Netherlands, 1999; Vol. C, pp 572–574.

Table 1. Structure Parameters for BiInO3^a

site	Wyckoff position	x	у	z	$10^2 U (\text{\AA}^2)$
Bi	4a	0.05955(14)	0.0088(3)	0.7797(2)	0.91(3)
In^b	4a	0.0026(4)	0.5011(14)	0	0.34(4)
01	4a	-0.054(3)	0.383(3)	0.773(5)	0.7(4)
O2	4a	0.171(4)	0.218(4)	0.447(3)	2.3(8)
O3	4a	0.344(4)	0.630(3)	0.530(3)	0.2(6)

^{*a*} Space group $Pna2_1$ (No. 33); Z = 4; a = 5.95463(7) Å, b = 5.60182(7) Å, c = 8.38631(11) Å, and V = 279.740(6) Å³; $R_{wp} = 9.56\%$, $R_p = 7.30\%$, $R_B = 3.95\%$, $R_F = 2.16\%$, and $S = R_{wp}/R_e = 2.58$. Occupancy factors of all of the sites are unity. ^{*b*} The In site was placed at z = 0 due to the arbitrariness of setting the origin in the noncentrosymmetric space group of $Pna2_1$.

Table 2. Bond Lengths, l (Å), in BiInO₃

bonds	l	bonds	l
Bi-O1	2.20(1)	In-O2	1.93(2)
Bi-O3	2.28(2)	In-O1	2.05(4)
Bi-O2	2.34(3)	In-O3	2.21(2)
Bi-O1a	2.38(2)	In-O3a	2.28(2)
Bi-O3a	2.58(2)	In-O2a	2.34(2)
Bi-O2a	2.68(2)	In-O1a	2.40(4)
Bi-O2b	3.10(2)		

it is present, results in errors in the atomic coordinates that are large as compared to normal estimated standard deviations.³³ Both models gave the similar standard deviations for fractional atomic coordinates: $(2-4) \times 10^{-4}$ for Bi and $(2-3) \times 10^{-3}$ for O in space group *Pnma* and $(1-3) \times 10^{-4}$ for Bi and $(3-5) \times 10^{-3}$ for O in space group *Pna2*₁. All of these facts allowed us to conclude from the XRD data that BiInO₃ crystallizes in noncentrosymmetric space group *Pna2*₁.

The as-synthesized BiInO₃ and BiInO₃ heated to 823 K showed SHG signals of about 120–140 times that of α -quartz. The main phase was the same in these two samples, but impurities were different. Therefore, the SHG signal is believed to come from the main phase, proving that BiInO₃ crystallizes in the noncentrosymmetric space group.

Table 1 gives experimental and refinement conditions, lattice parameters, R factors, and so forth. Final fractional coordinates and U parameters in space group $Pna2_1$ for BiInO₃ are listed in Table 1, and selected bond lengths, l, calculated with ORFFE³⁴ are shown in Table 2. Figure 2 displays observed, calculated, and difference XRD patterns. Figure 3 shows the projections of the crystal structure of BiInO₃ along the *b* and *c* axes.

Thermal Stability of BiInO₃. The DTA curve showed an exothermic peak centered at about 920 K and an endothermic peak centered at 1020 K (see Supporting Information). XRD data collected after the heating of BiInO₃ up to 1073 K showed that BiInO₃ decomposed to a mixture of In₂O₃ and Bi₂₅InO₃₉. The same mixture (In₂O₃ and Bi₂₅InO₃₉) was obtained by heating In₂O₃ and Bi₂O₃ at 1023 K and ambient pressure for 10 h. The endothermic peak at 1020 K was proved to be originated from the mixture of In₂O₃ and Bi₂₅InO₃₉. The exothermic peak at 920 K corresponds to the decomposition of BiInO₃ that starts from about 873 K.

Figure 2. Observed (+) and calculated (-) XRD patterns for BiInO₃ in the *Pna*2₁ model. The difference pattern is shown at the bottom. The missing parts on the XRD patterns give the regions excluded from the refinement. Bragg reflections are indicated by tick marks. The lower tick marks are given for the impurity phase, In₂O₃. Inset shows the enlarged fragment with the full observed XRD pattern.

Figure 3. (a) Schematic projection view of the structure of BiInO₃ along the *c* axis. The InO₆ octahedra are drawn. The Bi atoms are shown by circles. (b) Schematic projection view of the structure of BiInO₃ along the *b* axis. The InO₆ octahedra are drawn. Black circles show the positions of atoms in a hypothetical *Pnma* structure.

The DSC curve from 140 to 823 K showed one very broad anomaly near 623 K. The same anomaly was observed in BiAlO₃, BiGaO₃, and BiScO₃.²⁰ Its origin seems to be annealing effects. The above data indicate that no structural

⁽³³⁾ Marsh, R. E. Acta Crystallogr., Sect. B 1995, 51, 897.

⁽³⁴⁾ Busing, W. R.; Martin, K. O.; Levy H. A. Report ORNL-TM-306; Oak Ridge National Laboratory: TN, 1964.

Figure 4. Raman spectrum of $BiInO_3$ at room temperature. The enlarged Raman spectrum is present using the secondary axis. Numbers count the observed Raman bands.

phase transitions occur in BiInO₃ below 873 K down to 140 K.

Raman Spectroscopy of BiInO₃. BiInO₃ (space group $C_{2\nu}{}^9$) has four formula units in the primitive cell and 60 degrees of vibrational freedom. Factor group analysis³⁵ predicts the following modes: $14A_1 + 15A_2 + 14B_1 + 14B_2$. Because all of the modes are Raman active, 57 Raman modes are expected. Factor group analysis for the *Pnma* ($D_{2h}{}^{16}$) model predicts the following modes: $7A_g + 5B_{1g} + 7B_{2g} + 5B_{3g} + 8A_u + 10B_{1u} + 8B_{2u} + 10B_{3u}$. Raman active modes are A_g, B_{1g}, B_{2g}, and B_{3g}. Therefore, maximum 24 Raman modes ($7A_g + 5B_{1g} + 7B_{2g} + 5B_{3g}$) should be present if the space group of BiInO₃ were *Pnma*. We observed 22 Raman modes experimentally (Figure 4).

Discussion

There are a large number of perovskite-type compounds that crystallize in the orthorhombically distorted GdFeO₃type structure with $a \approx \sqrt{2a_p}$, $b \approx 2a_p$, and $c \approx \sqrt{2a_p}$, where $a_{\rm p} \approx 3.8$ Å is the parameter of the cubic perovskite subcell. The overwhelming majority of the GdFeO₃-type compounds have centrosymmetric crystal structure with space group Pnma. In the middle of the last century, some of the GdFeO3type compounds were described as noncentrosymmetric, for example, CdTiO₃ and LaYbO₃.^{32,36} However, their structures were revised latter using more advanced diffraction techniques and other methods (SHG and piezoelectric tests), and they were shown to be centrosymmetric belonging to space group Pnma.^{32,36} Sometimes it is very difficult to distinguish between space groups Pnma and Pna21 using diffraction methods or Raman spectroscopy, for example, in CdTiO₃.³⁷ Only the observation of ferroelectric properties below a certain temperature (77 K in CdTiO₃) allowed for the conclusion that a centrosymmetric-noncentrosymmetric phase transition occurs.³⁷

In the case of BiInO₃, the powder diffraction data allowed us to unambiguously distinguish between space groups *Pnma*

and $Pna2_1$. This is attributed to a large structure distortion of BiInO₃, that is, a large displacement (~0.25 Å) of heavy Bi³⁺ ions from the mirror plane of *Pnma*. The space group $Pna2_1$ is polar and allows a spontaneous polarization. The polarization of BiInO₃ was calculated using the point charge model:

$$P_{\rm s} = \sum_{i} Q_{i} z_{i} / V \tag{1}$$

where Q_i is the formal ionic charge of each atom, z_i is its displacement along the *c* axis in $Pna2_1$ with respect to a hypothetical unpolarized *Pnma* structure (see Supporting Information), and *V* is the unit cell volume. This formula gives $P_s = 18 \ \mu\text{C/cm}^2$.

Because BiInO₃ crystallizes in the polar structure at RT, one may expect that a polar—nonpolar phase transition should take place at higher temperatures. However, we could not detect any phase transitions in BiInO₃ with the DSC and DTA measurements up to the decomposition temperature of 873 K. Therefore, the Curie temperature of BiInO₃ at ambient pressure seems to be higher than 873 K.

Bi³⁺ ions are located in a strongly distorted oxygen environment (Table 2 and Figure 3). Four Bi–O distances are short (2.20–2.38 Å), and the other three Bi–O distances are long (2.58–3.10 Å). Therefore, the lone electron pair of a Bi³⁺ ion is active in BiInO₃, resulting in the parallel cooperative displacements of Bi³⁺ ions in the *c* direction away from the centroids of their oxygen coordination environments (Figure 3b). Note that LaInO₃ containing no stereochemically active ions crystallizes in space group *Pnma* with La lying on the mirror plane.³⁸ To obtain information on formal oxidation states of Bi and In, we calculated the bond valence sums, BVS,³⁹ of the Bi and In sites in BiInO₃ from the Bi–O and In–O bond lengths. The resulting BVS values were 2.87 for Bi and 2.97 for In. These BVS values support the oxidation state of +3 for Bi and In.

The average tilting angle, $\langle \omega \rangle$, of the InO₆ octahedra was determined from the $\theta_1(\text{In}-\text{O1}-\text{In}) = 141.3^\circ$, $\theta_2(\text{In}-\text{O2}-\text{In}) = 145.3^\circ$, and $\theta_3(\text{In}-\text{O3}-\text{In}) = 131.8^\circ$ superexchange angles with the equations:⁴⁰

$$\langle \omega \rangle = (180 - \langle \theta \rangle)/2$$

and

$$\langle \theta \rangle = (\theta_1 + \theta_2 + \theta_3)/3 \tag{2}$$

These equations give $\langle \omega \rangle = 20.3^{\circ}$. The $\langle \omega \rangle$ and θ_i values indicate that the titling is rather large. Similar θ_i values were observed in BiNiO₃, which crystallizes in triclinically distorted GdFeO₃-type structure (space group $P\bar{1}$).⁴¹ Because of the large titling of the InO₆ octahedra, the coordination

⁽³⁵⁾ Rousseau, D. L.; Bauman, R. P.; Porto, S. P. S. J. Raman Spectrosc. 1981, 10, 253.

⁽³⁶⁾ Moreira, R. L.; Feteira, A.; Dias, A. J. Phys.: Condens. Matter 2005, 17, 2775.

 ^{(37) (}a) Shan, Y. J.; Mori, H.; Tezuka, K.; Imoto, H.; Itoh, M. Ferroelectrics 2003, 284, 281. (b) Sun, P. H.; Nakamura, T.; Shan, Y. J.; Inaguma, Y.; Itoh, M. Ferroelectrics 1998, 217, 137.

⁽³⁸⁾ Park, H. M.; Lee, H. J.; Park, S. H.; Yoo, H. I. Acta Crystallogr., Sect. C 2003, 59, 131.

⁽³⁹⁾ Brese, R. E.; O'Keeffe, M. Acta Crystallogr., Sect. B 1991, 47, 192.

⁽⁴⁰⁾ See, for example: Pinsard-Gaudart, L.; Rodriguez-Carvajal, J.; Daoud-Aladine, A.; Goncharenko, I.; Medarde, M.; Smith, R. L.; Revcolevschi, A. *Phys. Rev. B* 2001, *64*, 064426.

⁽⁴¹⁾ Ishiwata, S.; Azuma, M.; Takano, M.; Nishibori, E.; Takata, M.; Sakata, M.; Kato, K. J. Mater. Chem. 2002, 12, 3733.

number of a large cation changed from 12 in an ideal cubic perovskite to 6+1 in BiInO₃.

The stability and distortions of perovskite-type oxides can be qualified using the tolerance factor, *t*:

$$t = \frac{r_{\rm A} + r_{\rm O}}{\sqrt{2}(r_{\rm B} + r_{\rm O})}$$
(3)

where r_A , r_B , and r_O are the ionic radii of the A, B, and oxygen ions, respectively, in perovskite ABO₃. We used the *r* values for six-fold coordination, $r_{Bi} = 1.03$ Å, $r_{In} = 0.80$ Å, and $r_O = 1.40$ Å.⁴² In this case (that is, *r* for 6-fold coordination), the stability of the perovskite structure is expected within the limits 0.77 < t < 0.99.¹⁸ Therefore, BiInO₃ with t = 0.78 is located just near the stability region.

The number of the observed Raman bands in BiInO₃ was smaller than the predicted number for the *Pnma* and *Pna*2₁ models. Therefore, we could not distinguish unambiguously between *Pnma* and *Pna*2₁ using Raman spectroscopy. However, the number of the observed Raman bands in the GdFeO₃-type compounds belonging to space group *Pnma* is usually about 2 times smaller than the predicted number of 24, for example, 8 in CaFeO₃,⁴³ 12 in LaYbO₃,³⁶ and 12 in LaMnO₃.⁴⁴ The polarized Raman measurements using

single crystals allow one to detect more Raman bands, for example, 19 in YMnO₃.⁴⁴ The observation of 22 Raman modes in the powder BiInO₃ sample gives indirect evidence about the correct space group.

In conclusion, we prepared a new oxide $BiInO_3$ that crystallizes in a polar GdFeO₃-type perovskite structure. Structure parameters of $BiInO_3$ were refined from X-ray powder diffraction data. Thermal stability, vibrational properties, and second-harmonic generation efficiency of $BiInO_3$ were studied.

Acknowledgment. ICYS is supported by Special Coordination Funds for Promoting Science and Technology from MEXT, Japan.

Supporting Information Available: DSC and DTA curves of BiInO₃ (Figure S1); O–In–O bond angles (Table S1); structure parameters of BiInO₃ determined in space group *Pnma* (Table S2) (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

CM052627S

(44) Iliev, M. N.; Abrashev, M. V.; Lee, H. G.; Popov, V. N.; Sun, Y. Y.; Thomsen, C.; Meng, R. L.; Chu, C. W. Phys. Rev. B 1998, 57, 2872.

⁽⁴²⁾ Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751.

⁽⁴³⁾ Ghosh, S.; Kamaraju, N.; Seto, M.; Fujimori, A.; Takeda, Y.; Ishiwata, S.; Kawasaki, S.; Azuma, M.; Takano, M.; Sood, A. K. *Phys. Rev. B* 2005, *71*, 245110.